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LElTER TO THE EDITOR 

Classical spin dynamics and quantum algebras 

S K Sonit 
Institute of Mathematical Sciences, CIT Campus, Madras 600113, India 

Received 14 October 1991 

Abstract. I t  is shown that the classical dynamics of a charged spinning particle in a constant 

the generators of spin angular momentum. The novel feature of our analysis is that it is 
not based on a Hamiltonian formulation of the equations of motion. 
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Attention has been drawn recently to the quantal phase of Berry (1984, 1985) accom- 
panying adiabatic changes and its classical analogue called Hannay angles (Hannay 
1985). Berry and Hannay have established this phenomenon in full generality and also 
explicitly worked out several interesting cases. In particular, Berry has calculated the 
geometrical phase factor for an arbitrary spin eigenstate when the external magnetic 
field about which the spin magnetic moment precesses is varied adiabatically around 
a closed circuit. Many authors have reported measurements of the Berry phase of a 
spinning particle in a magnetic field. The results of these measurements agree with 

Cina 1986). In this work we point out that these classical equations admit a Poisson 
bracket structure which is more general than the conventional SU(2) Lie algebraic 
structure assumed for the spin variables. 

Consider the classical description of a non-relativistic particle with definite spin. 
Assume that the particle has an electric charge q, a mass m and a magnetic moment 
p. If the particle also interacts with an external magnetic field B. which does not 
explicitly involve time, the familiar equations of motion are 

c!anslca! phase shifts c&u!a!ed_ by so!vifig the eqgations of spifi precession (see e.g. 

mxa = qE.bCxbB, ipSb aBb/ax. (1) 

s a  = PEabcSbBc.  (2) 
Here x,, and S., denote, respectively, the position and the spin degrees of freedom. As 
is well known, the ponderomotive equation (1)  describes the motion of a charged 
spinning particle in a non-homogeneous magnetic field. Of importance for calculating 
classical phase shifts is (2) which describes the spin magnetic moment precession in 
a magnetic field. The equations of magnetic field are the Maxwell equations. 

The classical Hamiltonian description of ( I )  and (2) is known. In the standard 
theory the Hamiltonian has the following form (where A. is the vector potential from 
which the magnetic field is derived in the usual way, E. = eak aAc/axb. in order to 
make E. a solenoidal field) 

H = (P. -qA.)(pa-qA.)/2m -P~ .B . .  (3) 
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The various Poisson brackets are 

together with 

{Sa, s b ) =  EabcSc (7) 

and 

(S. ,xtJ=O (8) 

{ s a , P b } = o .  (9) 

The Poisson brackets given in (7) are a consequence of the assumption which is 
conventionally made that S. obey the SU(2) algebra. 

Now it is easy to check using (3)-(9) that one can derive (1) and (2) from 

p o = { p a ,  H } = - a H / a x .  (10) 

xa = {x., H )  = +a H l J p .  ( 1 1 )  

.%={Sa,  H ) =  ~ . ~ ~ S ~ a H / a s ~ .  (12) 

Note that H does not explicitly depend on time and is a conserved quantity by virtue 

It is worth pointing out that ( 1 )  and (2) also admit a classical description outside 
the framework of conventional wisdom just described. This conceptually simpler 
description is based on the following Poisson bracket relations (all of which are 
compatible with the aforementioned ones) 

of (lO)-(lZ), 

(14) 
4 

{ x m ,  x b }  =g EabcBc 

besides 

{Sa, *b} = 0 ( 1 5 )  

the relation (8), and the SU(2) relations assumed in (7). The relation (14) may be said 
to define the quantity E.. Following Dyson (1990) it can be shown that E. is velocity 
independent and solenoidal. The coefficient q / m 2  will correctly lead to the ‘q against 
cross E’ term in the Lorentz force (see (22)). In this way the relation (14) should not 
be regarded as an additional assumption; rather it may be looked upon as the definition 
of magnetic field. The simplicity of our approach lies in essentially assuming (13), 
leaving aside the familiar assumptions of (7), (8) and (15). 

To arrive at the equations of motion we may proceed as follows. Since (13), (14), 
(15), (8) and (7) are valid at all times, we are led to the following consistency conditions 
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which are obtained by differentiating them. We have, respectively, 

{ X n ,  X b } +  {xu, X,} =o (16) 

(17) 4 
m 

{Xa, X,} + { X a ,  X,} = 7 &',,J$ 

These conditions are 'weak' in the sense that they hold by virtue of the basic bracket 
relations. They lead to the following 'strong' conditions, however. 

Consider (16). It leads to 

m J X J J X ,  = qEabCB, (21) 

whereupon its solution gives 

mxe = qaabcxbBr + E. 

in which the newly introduced quantity E. denotes a velocity independent field, though 
it may depend on position and spin variables. We may substitute (22) into (17) to 
discover that E. is irrotational: sabC JEJJx,=O. Hence we may write 

mx, = qeabrXbBr -JV/Jx. (23) 

where V is the velocity-independent potential energy function (the specific form for 
V will be chosen later) 

{ v, x',}=O. (24) 

Having established Newton's law of motion in the form given by (23) we may insert 
this law into (18) to yield 

JS,,lJXa =a{&, V}/Jxb. (25) 

This last equation is easily solved to give the equation of motion for spin variables in 
the form 

& = { S a ,  V } + X . .  (26) 

In order to be led to spin precession from (26) it is crucial to realize that the first term 
in the equation of motion for S., viz, {Sa, V } = { S . ,  S,}JV/Jsb=s.b,S, JVlJS,, 
automatically satisfies the consistency condition given in (20). so X .  is bound to satisfy 
this condition separately 

{ x a , S b } - { x b ,  s a } = & u b c X r .  (27) 

In turn this leaves no room for addition of X, in (26). Let us argue that X .  must 
vanish. By definition X .  is independent of xb. Now consider its bracket with x,. Using 
the Jacobi identity involving V, x, and Sa, we get 

{xe, x b } = { S a ,  x b } - { {  v, xb}, sa}-{{xb, Sa)? (28) 

This bracket vanishes term by term in virtue of (15). (19). (8) and (24). Hence X.  must 
also be velocity independent and may only be of the form x. = sJ(SbSb) and satisfy 

{So, xb) = &.b&. (29) 
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Now (27)  and (29) agree only if X ,  = 0. In  conclusion, the equation of motion for S. 
assumes the form 

&={Sa, V } .  (30) 
We have shown the existence of a quantity V(x,  S )  in terms of which our strong 
conditions are (23) and (30). 

Let us complete the derivation of (1) and (2) which follow from (23) and (30). It 
is easy to check that V =  -pS,B, leads to (1) and (2). However we are free to add an 
arbitrary function of C ,  = S,S. to V without affecting the equations of motion. Before 
we take issue with the deformed Poisson bracket structure in the following, let us agree 
to write the SU(2) Poisson bracket relations as 

{Sa, s b } = t E a b c  actas, (31) 

with C = C , .  With the help of (30) we get 

C = S. actas, ={sa, sb}av/asb actas. (32) 
which vanishes on substituting (31) into (32). Hence C is constrained to be a constant 
of motion. 

Having knit a framework suitable for the description of spin dynamics which is 
simpler than the existing descriptions (see e.g. Balachandran et al 1983), we are ready 
to establish our main claim in this work. Consider the interesting special case of a 
constant and homogeneous magnetic field. Let us assume that a magnetic field of given 
strength B = (B.B.)”’ points in the z-direction everywhere. In this case the equations 
of spin precession reduce to 

S. pBE.b,sb (33) 

thereby showing that C, and C,= S, are both constants of motion. Furthermore when 
one tries to derive (33) from (30) with the choice V = - P E S , ,  it is found that while 
{S,, S,} and { S 3 ,  SJ are uniquely determined, {SI, SJ is allowed to be an arbitrary 
function of S,. It is legitimate to  ask whether one may depart from the SU(2) Lie 
algebraic Poisson bracket structure by modifying the definition of C given in (31). We 
are now going to show that our analysis leading to the equations of spin precession 
(33) remains unchanged under the modification of C produced by the addition of an  
arbitrary function of C: to C ,  in the definition of C. 

Let us say that the Poisson brackets are defined as in ( 3 1 )  with C = C,+g(C:). 
Here g is an arbitrary function of its argument. The modified Poisson bracket relations 
for S. become 

{sa, s b } =  E.b&+Eob3& dgtdc:. (34) 

We can recover the consistency condition given in (20) by taking d /df  of (34), so this 
condition is unaffected under the modification of C given above. This condition 
ultimately led to (30). The crucial point in our argument leading to (30) from (26) was 
the identity 

{si? v)}-{sb,  {sa, v ) } =  E a b r { S r ,  v). (35) 

This last result (35) holds just as well in the present case. This is essentially a 
consequence of the Jacobi identity involving So,  Sb and S,. This identity is trivial to 
check with the help of (34) because (34) does not modify { S 3 ,  SI} and { S 3 , S 2 } .  In 
balance we have shown that the equations (33) follow from (30) with the help of also 
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the modified Poisson bracket relations as given in (34). We need to take V = -@B& 
up to the addition of an arbitrary function of C given above. 

In order to obtain an SUJ2) algebraic structure we may choose C to be the Casimir 
invariant for SU,(2), i.e. 

s inhn sinhnC, c= c,= c,-  c:+- 
n ( sinhn ) ' 

Here n is related to the deformation parameter q as n =In  q. Together with equation 
(31), this definition of C yields 

This is the well known deformation of the universal enveloping algebra of SU(2) 
(Jimbo 1986). 

It is worth pointing out that we can be even more genera! and describe the equations 
of spin precession (33) by means of a pair of functions depending arbitrarily on C ,  
and C,. Let the fundamental brackets be defined by (Hojman 1991) 

{Sa, = h b r  J c / J S ,  (38) 

for any functions I and C of C ,  and C, .  It is important to observe that this definition 
ensures the antisymmetry property {Sa, Sb} = -{&, Sa] and the Jacobi identity 
E . ~ ~ { { S . ,  Sb], SJ =O. The constraint equations 

obtained by differentiating (38) are automatically satisfied by the equations of motion 
in the form 

S. =IS., V I  (40) 

by virtue of the Jacobi identity involving So, S, and S,. Here V is any function of C ,  
and C, .  It is easy to verify that the equations of spin precession (33) follow from (40) 
provided we choose 

The choice I=$,  C = C,, V =  -pBC2 made earlier for arriving at the SU,(2) Poisson 
bracket structure is a special case of the procedure just outlined. 

In this work we have shown that the classical spin dynamics in a constant uniform 
magnetic field can also be described by assuming that the generators of spin angular 
momentum satisfy SU,(2) Poisson bracket relations. Recently Hojman (1991) arrived 
at a similar conclusion by considering the closely related classical dynamics of a 
symmetric top within a Hamiltonian framework. Our analysis is conceptually simpler, 
formulated without recourse to a Hamiltonian theory of the equations of motion. Our 

assumes only the commutation relation between position and velocity of a spinless 
particle, and, introducing the magnetic and electric fields by way of definition he 
arrives at the Lorentz force equation in an operator form and derives the homogeneous 
equations of fields. We have extended Dyson's analysis to the present case of a charged 

a-abysis is i-spired by B ~3:evKm'hy srtic!e of Dyson goon). !n !hi. p2per Ep:: 
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particle spinning in a constant homogeneous magnetic field at the expense of introduc- 
ing two functions denoted V and C. See (38) and (40). They are both constrained to 
be constants of motion. They can be quite arbitrary apart from being subject to the 
condition (41). 
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